### network-flow

#### Arbitrary flow network with source sink and positive capacity on every edge

```let G = (V,E) be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity Ce on every edge e.
(a) Assuming there is at least one s-t path in G. If all edge capacities of edges in E are different, then there is only one min-cut (A,B) for G.
(b) Define G'= (V,E') to be a flow network with the same vertices V as G, and the edges E' consist of the same edges in E, except that the capacities of edges in E' are twice the capacity of the corresponding edge in E. That is, e = (u,v)∈ E has capacity Ce if and only if e' = (u,v) ∈ E' has capacity 2Ce. Then the capacity of any min-cut of G' has twice the capacity of any min-cut of G.
Need some help with this question, thanks.
please state if each claim is true of false, need explanation or counter-example, Thank you.```

Database Users
RDBMS discuss
javascript
java
csharp
php
android
javascript
java
csharp
php
python
android
jquery
ruby
ios
html
Mobile App
Mobile App
Mobile App